Source code for torchex.nn.modules.cnn_blocks

import torch
import torch.nn as nn
import torch.nn.functional as F

from .lazy import Conv2d

class Conv2dBlock(nn.Module):
    def __init__(self, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 dropout:float=0.0, pooling=False, batchnorm=False,
                 activation='relu'):
        super(Conv2dBlock, self).__init__()

        self.dropout = dropout
        self.pooling = pooling        
        self.batchnorm = batchnorm
        
        self.conv = Conv2d(out_channels, kernel_size, stride,
                           padding, dilation, transposed, output_padding, groups, bias),


    def forward(self, x):
        return self.model(x)
        
    


[docs]class Inception(nn.Module): """Inception module of GoogLeNet. It applies four different functions to the input array and concatenates their outputs along the channel dimension. Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1 convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and 3x3 max pooling. The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate padding for each convolution and pooling. See: `Going Deeper with Convolutions <https://arxiv.org/abs/1409.4842>`_. Args: in_channels (int or None): Number of channels of input arrays. out1 (int): Output size of 1x1 convolution path. proj3 (int): Projection size of 3x3 convolution path. out3 (int): Output size of 3x3 convolution path. proj5 (int): Projection size of 5x5 convolution path. out5 (int): Output size of 5x5 convolution path. proj_pool (int): Projection size of max pooling path. TODO: Implement dimension reduction version. """ def __init__(self, in_channels, out1, proj3, out3, proj5, out5, proj_pool): super(Inception, self).__init__() self.conv1 = nn.Conv2d(in_channels, out1, 1) self.proj3 = nn.Conv2d(in_channels, proj3, 1) self.conv3 = nn.Conv2d(proj3, out3, 3, padding=1) self.proj5 = nn.Conv2d(in_channels, proj5, 1) self.conv5 = nn.Conv2d(proj5, out5, 5, padding=2) self.projp = nn.Conv2d(in_channels, proj_pool, 1) def forward(self, x): """Computes the output of the Inception module. Args: x (~torch.Tensor): Input variable. Returns: Variable: Output variable. Its array has the same spatial size and the same minibatch size as the input array. The channel dimension has size ``out1 + out3 + out5 + proj_pool``. """ out1 = self.conv1(x) out3 = self.conv3(F.relu(self.proj3(x))) out5 = self.conv5(F.relu(self.proj5(x))) pool = self.projp(F.max_pool2d(x, 3, stride=1, padding=1)) y = F.relu(torch.cat((out1, out3, out5, pool), dim=1)) return y
[docs]class InceptionBN(nn.Module): """Inception module of the new GoogLeNet with BatchNormalization. This chain acts like :class:`Inception`, while InceptionBN uses the :class:`BatchNormalization` on top of each convolution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling method is configurable. See: `Batch Normalization: Accelerating Deep Network Training by Reducing \ Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`_. Args: in_channels (int or None): Number of channels of input arrays. out1 (int): Output size of the 1x1 convolution path. proj3 (int): Projection size of the single 3x3 convolution path. out3 (int): Output size of the single 3x3 convolution path. proj33 (int): Projection size of the double 3x3 convolutions path. out33 (int): Output size of the double 3x3 convolutions path. pooltype (str): Pooling type. It must be either ``'max'`` or ``'avg'``. proj_pool (int or None): Projection size in the pooling path. If ``None``, no projection is done. stride (int): Stride parameter of the last convolution of each path. .. seealso:: :class:`Inception` """ def __init__(self, in_channels, out1, proj3, out3, proj33, out33, pooltype='max', proj_pool=None, stride=1): super(InceptionBN, self).__init__() self.out1 = out1 self.proj_pool = proj_pool self.stride = stride self.pooltype = pooltype if pooltype != 'max' and pooltype != 'avg': raise NotImplementedError() self.proj3 = nn.Conv2d(in_channels, proj3, 1, bias=False) self.conv3 = nn.Conv2d(proj3, out3, 3, padding=1, stride=stride, bias=False) self.proj33 = nn.Conv2d(in_channels, proj33, 1, bias=False) self.conv33a = nn.Conv2d(proj33, out33, 3, padding=1, bias=False) self.conv33b = nn.Conv2d(out33, out33, 3, padding=1, stride=stride, bias=False) self.proj3n = nn.BatchNorm2d(proj3) self.conv3n = nn.BatchNorm2d(out3) self.proj33n = nn.BatchNorm2d(proj33) self.conv33an = nn.BatchNorm2d(out33) self.conv33bn = nn.BatchNorm2d(out33) if out1 > 0: assert stride == 1 assert proj_pool is not None self.conv1 = nn.Conv2d(in_channels, out1, 1, stride=stride, bias=False) self.conv1n = nn.BatchNorm2d(out1) if proj_pool is not None: self.poolp = nn.Conv2d(in_channels, proj_pool, 1, bias=False) self.poolpn = nn.BatchNorm2d(proj_pool) def forward(self, x): outs = [] if self.out1 > 0: h1 = self.conv1(x) h1 = self.conv1n(h1) h1 = F.relu(h1) outs.append(h1) h3 = F.relu(self.proj3n(self.proj3(x))) h3 = F.relu(self.conv3n(self.conv3(h3))) outs.append(h3) h33 = F.relu(self.proj33n(self.proj33(x))) h33 = F.relu(self.conv33an(self.conv33a(h33))) h33 = F.relu(self.conv33bn(self.conv33b(h33))) outs.append(h33) if self.pooltype == 'max': p = F.max_pool2d(x, 3, stride=self.stride, padding=1, cover_all=False) else: p = F.avg_pool2d(x, 3, stride=self.stride, padding=1) if self.proj_pool is not None: p = F.relu(self.poolpn(self.poolp(p))) outs.append(p) y = torch.cat(outs, dim=1) return y